Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Physiol ; 239(1): 112-123, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38149778

RESUMEN

Lipid biosynthesis is recently studied its functions in a range of cellular physiology including differentiation and regeneration. However, it still remains to be elucidated in its precise function. To reveal this, we evaluated the roles of lysophosphatidic acid (LPA) signaling in alveolar bone formation using the LPA type 2 receptor (LPAR2) antagonist AMG-35 (Amgen Compound 35) using tooth loss without periodontal disease model which would be caused by trauma and usually requires a dental implant to restore masticatory function. In this study, in vitro cell culture experiments in osteoblasts and periodontal ligament fibroblasts revealed cell type-specific responses, with AMG-35 modulating osteogenic differentiation in osteoblasts in vitro. To confirm the in vivo results, we employed a mouse model of tooth loss without periodontal disease. Five to 10 days after tooth extraction, AMG-35 facilitated bone formation in the tooth root socket as measured by immunohistochemistry for differentiation markers KI67, Osteocalcin, Periostin, RUNX2, transforming growth factor beta 1 (TGF-ß1) and SMAD2/3. The increased expression and the localization of these proteins suggest that AMG-35 elicits osteoblast differentiation through TGF-ß1 and SMAD2/3 signaling. These results indicate that LPAR2/TGF-ß1/SMAD2/3 represents a new signaling pathway in alveolar bone formation and that local application of AMG-35 in traumatic tooth loss can be used to facilitate bone regeneration and healing for further clinical treatment.


Asunto(s)
Lisofosfolípidos , Osteogénesis , Receptores Lisofosfolípidos , Pérdida de Diente , Animales , Ratones , Diferenciación Celular/fisiología , Lisofosfolípidos/metabolismo , Osteoblastos/metabolismo , Ligamento Periodontal/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Receptores Lisofosfolípidos/metabolismo
2.
J Dent Sci ; 18(3): 1219-1226, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37404649

RESUMEN

Background/purpose: Human dental pulp stem cells (hDPSCs) possess excellent proliferative and osteogenic differentiation potentials. This study aimed to elucidate the role of lysophosphatidic acid (LPA) signaling in the proliferation and osteogenic differentiation of hDPSCs. Materials and methods: hDPSCs were treated with LPA and proliferation was measured using the cell counting kit-8 assay. Following the osteogenic differentiation of hDPSCs using osteogenic medium in the presence or absence of LPA, alkaline phosphatase (ALP) staining, ALP activity measurements, and RT-qPCR were performed to analyze the osteoblast differentiation. Small interfering RNA (siRNA)-mediated LPAR3 silencing and extracellular signal-regulated (ERK)/mitogen-activated protein (MAP) kinase inhibitors were used to elucidate the molecular mechanisms underlying LPA-induced proliferation and differentiation of hDPSCs. Results: LPA treatment significantly induced proliferation and osteogenic differentiation of hDPSCs. The depletion of LPAR3 expression by LPAR3-speicifc siRNA in hDPSCs diminished LPA-induced proliferation and osteogenic differentiation. The LPAR3-mediated proliferation and osteogenic differentiation of hDPSCs in response to LPA were significantly suppressed by U0126, a selective inhibitor of ERK. Conclusion: These findings suggest that LPA induces the proliferation and osteogenic differentiation of hDPSCs via LPAR3-ERK-dependent pathways.

3.
J Endod ; 49(7): 871-879, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37225037

RESUMEN

INTRODUCTION: The aim of this study was to compare the physicochemical properties and biocompatibility of various calcium silicate-based bioceramic sealers (CSBSs). METHODS: Four recently developed CSBSs, including AH Plus Bioceramic Sealer (AHB), EndoSequence BC Sealer (ESB), TotalFill BC Sealer (TTB), and Bio-C Sealer (BIC), were compared with the epoxy resin-based sealer AH Plus (AHP). Their physical properties, including flow, setting time, radiopacity, dimensional stability, and pH, were evaluated according to the International Organization for Standardization (ISO) 6876. Their cytotoxicity in human periodontal ligament fibroblast (hPDLF) was assessed through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and compared. Additionally, cell attachment to the sealer surface was analyzed using green fluorescent protein and confocal laser scanning microscopy to evaluate cell viability. Data were analyzed using a one-way analysis of variance to determine the difference between groups for categorical variables, followed by Tukey's post hoc test at the significance level of 95%. RESULTS: The flow, setting time, and radiopacity of all tested CSBSs satisfied the ISO 6876/2012 standards. Further, these CSBSs showed shrinkage after immersion in distilled water for 30 days and complied with the ISO 6876/2001 requirements. The pH values of AHB, ESB, TTB, and BIC were greater than 11, whereas AHP had a pH of 6.69 after 4 weeks. CSBS showed excellent biocompatibility compared with that of AHP (P < .05). Confocal laser scanning microscopy showed that alive hPDLFs were attached well to all the tested CSBSs but not to AHP. CONCLUSIONS: CSBSs have similar physical characteristics within the ISO standards and higher biocompatibility than epoxy resin-based sealers.


Asunto(s)
Resinas Epoxi , Materiales de Obturación del Conducto Radicular , Humanos , Resinas Epoxi/farmacología , Resinas Epoxi/química , Materiales de Obturación del Conducto Radicular/farmacología , Materiales de Obturación del Conducto Radicular/química , Cavidad Pulpar , Ensayo de Materiales , Compuestos de Calcio/farmacología , Compuestos de Calcio/química , Silicatos/farmacología , Silicatos/química
4.
Biomaterials ; 293: 121977, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36580714

RESUMEN

Dental pulp-derived stromal cells (DPSCs) are a crucial cell population for maintaining the tissue integrity of the pulp-dentin complex. The oxytocin receptor (OXTR), a member of the G protein-coupled receptor (GPCR) superfamily, plays versatile roles in diverse biological contexts. However, the role of OXTR in dental pulp has not yet been fully understood. Here, we demonstrate the biological functions and significance of OXTR in DPSCs through a multidisciplinary approach. Microarray data of 494 GPCR genes revealed high OXTR expression in human DPSCs (hDPSCs). Blocking OXTR activity increased the expression of osteogenic and odontogenic marker genes, promoting hDPSC differentiation. Additionally, we found that OXTR is involved in extracellular matrix (ECM) remodeling through the regulation of the gene expression related to ECM homeostasis. We further demonstrated that these genetic changes are mediated by trascriptional activity of Yes-associated protein (YAP). Based on the results, a preclinical experiment was performed using an animal model, demonstrating that the application of an OXTR inhibitor to damaged pulp induced significant hard tissue formation. These results provide new insight into the oxytocin-OXTR system in the regenerative process of pulp-dentin complex.


Asunto(s)
Receptores de Oxitocina , Células Madre , Animales , Humanos , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Proteínas/metabolismo , Matriz Extracelular , Diferenciación Celular/fisiología , Dentina/fisiología , Pulpa Dental , Células Cultivadas , Proliferación Celular
5.
Materials (Basel) ; 14(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34576409

RESUMEN

The skin protects the body from external barriers. Certain limitations exist in the development of technologies to rapidly prepare skin substitutes that are therapeutically effective in surgeries involving extensive burns and skin transplantation. Herein, we fabricated a structure similar to the skin layer by using skin-derived decellularized extracellular matrix (dECM) with bioink, keratinocytes, and fibroblasts using 3D-printing technology. The therapeutic effects of the produced skin were analyzed using a chimney model that mimicked the human wound-healing process. The 3D-printed skin substitutes exhibited rapid re-epithelialization and superior tissue regeneration effects compared to the control group. These results are expected to aid the development of technologies that can provide customized skin-replacement tissues produced easily and quickly via 3D-printing technology to patients.

6.
Exp Biol Med (Maywood) ; 246(16): 1802-1809, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34038224

RESUMEN

Stem cells possess unique biological characteristics such as the ability to self-renew and to undergo multilineage differentiation into specialized cells. Whereas embryonic stem cells (ESC) can differentiate into all cell types of the body, somatic stem cells (SSC) are a population of stem cells located in distinct niches throughout the body that differentiate into the specific cell types of the tissue in which they reside in. SSC function mainly to restore cells as part of normal tissue homeostasis or to replenish cells that are damaged due to injury. Cancer stem-like cells (CSC) are said to be analogous to SSC in this manner where tumor growth and progression as well as metastasis are fueled by a small population of CSC that reside within the corresponding tumor. Moreover, emerging evidence indicates that CSC are inherently resistant to chemo- and radiotherapy that are often the cause of cancer relapse. Hence, major research efforts have been directed at identifying CSC populations in different cancer types and understanding their biology. Many factors are thought to regulate and maintain cell stemness, including bioactive lysophospholipids such as lysophosphatidic acid (LPA). In this review, we discuss some of the newly discovered functions of LPA not only in the regulation of CSC but also normal SSC, the similarities in these regulatory functions, and how these discoveries can pave way to the development of novel therapies in cancer and regenerative medicine.


Asunto(s)
Lisofosfolípidos/metabolismo , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Humanos , Lisofosfolípidos/farmacología , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología
7.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218046

RESUMEN

In the present study, we examined the bone healing capacity of Meox2, a homeobox gene that plays essential roles in the differentiation of a range of developing tissues, and identified its putative function in palatogenesis. We applied the knocking down of Meox2 in human periodontal ligament fibroblasts to examine the osteogenic potential of Meox2. Additionally, we applied in vivo periodontitis induced experiment to reveal the possible application of Meox2 knockdown for 1 and 2 weeks in bone healing processes. We examined the detailed histomorphological changes using Masson's trichrome staining and micro-computed tomography evaluation. Moreover, we observed the localization patterns of various signaling molecules, including α-SMA, CK14, IL-1ß, and MPO to examine the altered bone healing processes. Furthermore, we investigated the process of bone formation using immunohistochemistry of Osteocalcin and Runx2. On the basis of the results, we suggest that the knocking down of Meox2 via the activation of osteoblast and modulation of inflammation would be a plausible answer for bone regeneration as a gene therapy. Additionally, we propose that the purpose-dependent selection and application of developmental regulation genes are important for the functional regeneration of specific tissues and organs, where the pathological condition of tooth loss lesion would be.


Asunto(s)
Regeneración Ósea , Fibroblastos/metabolismo , Proteínas de Homeodominio/metabolismo , Ligamento Periodontal/metabolismo , Pérdida de Diente/metabolismo , Animales , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Transducción de Señal , Pérdida de Diente/genética
8.
Biochem Biophys Res Commun ; 529(2): 169-174, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32703406

RESUMEN

Supernumerary tooth (ST) may arise from uncertain developmental abnormalities or underlying genetic causes, and the extraction at the early age is recommended. Dental pulp stem cells (DPSCs) are the valuable resource for the regeneration of tooth and related craniofacial structures. DPSCs isolated from ST (sDPSCs) have not been fully characterized despite the potential in the applications. The objectives of this study are the efficient isolation of sDPSCs and the analysis of the properties as stem cells. sDPSCs were established by hammer-cracking and separation of the intact pulp from ST. sDPSCs in the culture were examined by light microscope and flow cytometer for the morphology and the surface marker expression. sDPSCs exhibited the cellular morphology of typical mesenchymal stem cells and expressed CD44, CD73, CD90, CD105 and CD166, but not CD14, CD34 or CD45. sDPSCs showed the differentiation potential toward osteogenic, chondrogenic and adipogenic lineages. During osteogenic differentiation, the stimulation by Oncostatin M enhanced the differentiation and significantly increased the expression of genes involved in the hard tissue repair, such as BMP2, BMP4, BMP6 and RUNX2. sDPSCs can be effectively derived from ST and displays the characteristics of mesenchymal stem cells in the maintenance and the differentiation. sDPSCs satisfies the quality as DPSCs thus provide the valuable resource to the regenerative therapy.


Asunto(s)
Pulpa Dental/citología , Oncostatina M/metabolismo , Osteogénesis , Células Madre/citología , Diente Supernumerario/metabolismo , Diferenciación Celular , Células Cultivadas , Pulpa Dental/metabolismo , Humanos , Células Madre/metabolismo
9.
Mol Cells ; 43(6): 581-589, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32597395

RESUMEN

Neurons have multiple dendrites and single axon. This neuronal polarity is gradually established during early processes of neuronal differentiation: generation of multiple neurites (stages 1-2); differentiation (stage 3) and maturation (stages 4-5) of an axon and dendrites. In this study, we demonstrated that the neuron-specific n-glycosylated protein NELL2 is important for neuronal polarization and axon growth using cultured rat embryonic hippocampal neurons. Endogenous NELL2 expression was gradually increased in parallel with the progression of developmental stages of hippocampal neurons, and overexpression of NELL2 stimulated neuronal polarization and axon growth. In line with these results, knockdown of NELL2 expression resulted in deterioration of neuronal development, including inhibition of neuronal development progression, decreased axon growth and increased axon branching. Inhibitor against extracellular signal-regulated kinase (ERK) dramatically inhibited NELL2-induced progression of neuronal development and axon growth. These results suggest that NELL2 is an important regulator for the morphological development for neuronal polarization and axon growth.


Asunto(s)
Axones/metabolismo , Hipocampo/citología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Animales , Diferenciación Celular , Polaridad Celular , Células Cultivadas , ARN Interferente Pequeño/metabolismo , Ratas , Transducción de Señal
10.
Biochem Biophys Res Commun ; 514(4): 1278-1284, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31113615

RESUMEN

Our previous study reported that cancer upregulated gene (CUG)2, a novel oncogene, induces both faster cell migration and anti-cancer drug resistance. We thus wonder whether CUG2 also induces stemness, a characteristic of cancer stem cells (CSCs) and further examine the molecular mechanism of this phenotype. To test that CUG2 induces stemness, we examined expression of stemness-related factors. Overexpression of CUG2 enhanced expression levels of stemness-related factors in human lung carcinoma A549 and immortalized bronchial BEAS-2B cells. Consequently, CUG2 increased cellular spherical cluster forming ability. Overexpression of CUG2 also induced tumor formation in xenotransplanted nude mice whereas transplantation of control cells failed to, implying that CUG2 possesses malignant tumorigenic potential. We paid attention to nucleophosmin (NPM1) for its known interaction with CUG2. Suppression of NPM1 hindered the CUG2-mediated stemness-like phenotypes and diminished TGF-ß transcriptional activity and signaling. TGF-ß increased stemness-like phenotypes in the control cells whereas TGF-ß inhibitor blocked induction of the phenotypes, indicating that NPM1 is required for CUG2-mediated stemness-like phenotypes through TGF-ß signaling. Furthermore, the suppression of Smad- and non-Smad-dependent TGF-ß signaling pathways also prevented CUG2 from inducing stemness-like phenotypes. Altogether, we suggest that the novel CUG2 oncogene promotes cellular transformation and stemness, mediated by nuclear NPM1 protein and TGF-ß signaling.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Células A549 , Animales , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nucleofosmina , Fenotipo
11.
Front Pharmacol ; 10: 367, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024321

RESUMEN

Excessive osteoclastic activity results in pathological bone resorptive diseases, such as osteoporosis, periodontitis, and rheumatoid arthritis. As imidazole-containing compounds possess extensive therapeutic potential for the management of diverse diseases, we synthesized a series of imidazole derivatives and investigated their effects on osteoclast differentiation and function. In the present study, we found that a novel imidazole derivative, KP-A038, suppressed receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis and bone-resorbing activity in vitro and attenuated lipopolysaccharide (LPS)-induced bone destruction in vivo. KP-A038 significantly inhibited the induction of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and the expression of its target genes, including tartrate-resistant acid phosphatase (Acp5), cathepsin K (Ctsk), dendritic cell-specific transmembrane protein (Dcstamp), and matrix metallopeptidase 9 (Mmp9). KP-A038 upregulated the expression of negative regulators of osteoclast differentiation, such as interferon regulatory factor-8 (Irf8) and B-cell lymphoma 6 (Bcl6). Consistently, KP-A038 downregulated the expression of B lymphocyte-induced maturation protein-1 (Blimp1 encoded by Prdm1), a repressor for Irf8 and Bcl6. Moreover, administration of KP-A038 reduced LPS-induced bone erosion by suppressing osteoclast formation in vivo. Thus, our findings suggest that KP-A038 may serve as an effective therapeutic agent for the treatment and/or prevention of bone loss in pathological bone diseases, including osteoporosis and periodontitis.

12.
Exp Mol Med ; 49(11): e401, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29170476

RESUMEN

Embryonic stem (ES) cells are pluripotent cells characterized by self-renewability and differentiation potential. Induced pluripotent stem (iPS) cells are ES cell-equivalent cells derived from somatic cells by the introduction of core reprogramming factors. ES and iPS cells are important sources for understanding basic biology and for generating therapeutic cells for clinical applications. Tribbles homolog 2 (Trib2) functions as a scaffold in signaling pathways. However, the relevance of Trib2 to the pluripotency of ES and iPS cells is unknown. In the present study, we elucidated the importance of Trib2 in maintaining pluripotency in mouse ES cells and in generating iPS cells from somatic cells through the reprogramming process. Trib2 expression decreased as ES cells differentiated, and Trib2 knockdown in ES cells changed their colony morphology while reducing the activity of alkaline phosphatase and the expression of the pluripotency marker genes Oct4, Sox2, Nanog and Klf4. Trib2 directly interacted with Oct4 and elevated Oct4 promoter activity. During the generation of iPS cells, Trib2 knockdown decreased the reprogramming efficiency of mouse embryonic fibroblasts, whereas Trib2 overexpression significantly increased their reprogramming efficiency. In summary, our results suggest that Trib2 is important for maintaining self-renewal in ES cells and for pluripotency induction during the reprogramming process.


Asunto(s)
Reprogramación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Biomarcadores , Diferenciación Celular/genética , Células Cultivadas , Técnicas de Reprogramación Celular , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor 4 Similar a Kruppel , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
13.
PLoS One ; 12(11): e0187464, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29095886

RESUMEN

Angiogenic peptides have therapeutic potential for the treatment of chronic ischemic diseases. Periostin, an extracellular matrix protein expressed in injured tissues, promotes angiogenesis and tissue repair. We previously reported that in vivo administration of both recombinant full-length protein and the first FAS I domain of periostin alleviated peripheral artery occlusive disease by stimulating the migration of humane endothelial colony forming cells (ECFCs) and subsequent angiogenesis. In the present study, we ascertained the peptide sequence responsible for the periostin-induced angiogenesis. By serial deletion mapping of the first FAS I domain, we identified a peptide sequence (amino acids 142-151) of periostin for stimulation of chemotactic migration, adhesion, proliferation and endothelial tube formation of human ECFCs in vitro. Chemotactic migration of ECFCs induced by the periostin peptide was blocked by pre-incubation with an anti-ß5 integrin neutralizing antibody. Treatment of ECFCs with the periostin peptide led to phosphorylation of both AKT and ERK, and pretreatment of ECFCs with the MEK-ERK pathway inhibitor U0126 or the PI3K-AKT pathway inhibitors, LY294002 or Wortmannin, blocked the periostin peptide-stimulated migration of ECFCs. These results suggest that the synthetic periostin peptide can be applied for stimulating angiogenic and therapeutic potentials of ECFCs.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Moléculas de Adhesión Celular/química , Androstadienos/farmacología , Anticuerpos Neutralizantes/inmunología , Butadienos/farmacología , Moléculas de Adhesión Celular/inmunología , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Cromonas/farmacología , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Humanos , Morfolinas/farmacología , Neovascularización Patológica , Nitrilos/farmacología , Fosforilación , Wortmanina
14.
Sci Rep ; 7(1): 13821, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29062050

RESUMEN

Cardiomyocytes differentiated from human pluripotent stem cells provide promising tools for screening of cardiotoxic drugs. For evaluation of human pluripotent stem cell-derived cardiomyocytes for cardiotoxicity test, in the present study, human embryonic stem cells (hESCs) were differentiated to cardiomyocytes, followed by metabolic selection to enrich the differentiated cardiomyocytes. The highly purified hESC-derived cardiomyocytes (hESC-CMs) expressed several cardiomyocyte-specific markers including cTnT, MLC2a, and α-SA, but not pluripotency markers, such as OCT4 and NANOG. Patch clamp technique and RT-PCR revealed the expression of cardiomyocyte-specific Na+, Ca2+, and K+ channels and cardiac action potential in hESC-CMs. To explore the potential use of hESC-CMs as functional cardiomyocytes for drug discovery and cardiotoxicity screening, we examined the effects of bisindolylmaleimide (BIM) (I), which inhibits native cardiac Ca2+ channels, on the Ca2+ channel activity of hESC-CMs. We observed a similar response for the BIM (I)-induced modulation of Ca2+ channels between hESC-CMs and native cardiomyocytes through L-type Ca2+ channel current. These results suggest that hESC-CMs can be useful for evaluation of pharmaceutical efficacy and safety of novel drug candidate in cardiac research.


Asunto(s)
Potenciales de Acción , Biomarcadores/metabolismo , Canales de Calcio Tipo L/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Indoles/farmacología , Maleimidas/farmacología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos
15.
Thyroid ; 27(11): 1424-1432, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28920531

RESUMEN

BACKGROUND: Anaplastic thyroid cancer (ATC) has a very poor prognosis due to its aggressive nature and resistance to conventional treatment. Radiotherapy and chemotherapy are not fully effective because of the undifferentiated phenotype and enhanced drug resistance of ATC. The objective of this study was to evaluate the involvement of Krüppel-like factor 4 (KLF4), a stemness-associated transcription factor, in the undifferentiated phenotype and drug resistance of ATC. METHODS: ATC cells were compared to papillary thyroid cancer cells in drug resistance and gene expression. The effects of KLF4 knockdown in ATC cells on in vitro and in vivo drug resistance were measured. The effects of KLF4 overexpression and knockdown on ABC transporter activity were determined. RESULTS: ATC cells, such as HTH83, 8505C, and SW1736, exhibited higher resistance to the anticancer drug paclitaxel and higher expression of KLF4 than TPC-1 papillary thyroid cancer cells. Knockdown of KLF4 expression in ATC cells increased the expression of the thyroid-specific differentiation genes, such as thyrotropin receptor, thyroid peroxidase, thyroglobulin, and sodium-iodide symporter. Knockdown of KLF4 expression in ATC cells decreased the resistance to doxorubicin and paclitaxel, and reduced ABC transporter expression. Luciferase reporter assay results showed that KLF4 overexpression increased ABCG2 promoter activity, which was abolished by KLF4 knockdown. A tumorigenicity assay showed that the combination of paclitaxel treatment and KLF4 knockdown significantly decreased tumor mass originated from HTH83 cells in mice. CONCLUSIONS: ATC cells show high expression of KLF4, and KLF4 expression is necessary for maintaining the undifferentiated phenotype and drug resistance in vitro and in vivo. The present study identifies KLF4 as a potential therapeutic target for eliminating ATC cells.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Factores de Transcripción de Tipo Kruppel/metabolismo , Paclitaxel/farmacología , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/tratamiento farmacológico , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Antineoplásicos/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Doxorrubicina/metabolismo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Paclitaxel/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Carcinoma Anaplásico de Tiroides/genética , Carcinoma Anaplásico de Tiroides/metabolismo , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Factores de Tiempo , Transfección , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Biomol Ther (Seoul) ; 25(4): 354-361, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28554198

RESUMEN

Transcriptional co-activator with a PDZ-binding motif (TAZ) is an important factor in lysophosphatidic acid (LPA)-induced promotion of migration and proliferation of human mesenchymal stem cells (MSCs). The expression of TAZ significantly increased at 6 h after LPA treatment, and TAZ knockdown inhibited the LPA-induced migration and proliferation of MSCs. In addition, embryonic fibroblasts from TAZ knockout mice exhibited the reduction in LPA-induced migration and proliferation. The LPA1 receptor inhibitor Ki16425 blocked LPA responses in MSCs. Although TAZ knockdown or knockout did not reduce LPA-induced phosphorylation of ERK and AKT, the MEK inhibitor U0126 or the ROCK inhibitor Y27632 blocked LPA-induced TAZ expression along with the reduction in the proliferation and migration of MSCs. Our data suggest that TAZ is an important mediator of LPA signaling in MSCs in the downstream of MEK and ROCK signaling.

17.
BMB Rep ; 50(10): 504-509, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28539159

RESUMEN

Ischemia is a serious disease, characterized by an inadequate blood supply to an organ or part of the body. In the present study, we evaluated the effects of the anti-microbial peptide SR-0379 on the stem cell-mediated therapy of ischemic diseases. The migratory and tube-forming abilities of human endothelial progenitor cells (EPCs) were enhanced by treatment with SR-0379 in vitro. Intramuscular administration of SR-0379 into a murine ischemic hindlimb significantly enhanced blood perfusion, decreased tissue necrosis, and increased the number of blood vessels in the ischemic muscle. Moreover, co-administration of SR-0379 with EPCs stimulated blood perfusion in an ischemic hindlimb more than intramuscular injection with either SR-0379 or EPCs alone. This enhanced blood perfusion was accompanied by a significant increase in the number of CD31- and α-SMApositive blood vessels in ischemic hindlimb. These results suggest that SR-0379 is a potential drug candidate for potentiating EPC-mediated therapy of ischemic diseases. [BMB Reports 2017; 50(10): 504-509].


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Células Progenitoras Endoteliales/efectos de los fármacos , Inductores de la Angiogénesis/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/trasplante , Terapia Genética , Miembro Posterior/irrigación sanguínea , Humanos , Isquemia/terapia , Ratones , Ratones Endogámicos BALB C , Neovascularización Fisiológica/efectos de los fármacos , Enfermedad Arterial Periférica/metabolismo , Enfermedad Arterial Periférica/terapia , Trasplante de Células Madre/métodos , Células Madre/fisiología
18.
Sci Rep ; 7: 43057, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28230162

RESUMEN

Human endothelial progenitor cells (hEPCs) are promising therapeutic resources for wound repair through stimulating neovascularization. However, the hEPCs-based cell therapy has been hampered by poor engraftment of transplanted cells. In this study, we explored the effects of N-acetylated Proline-Glycine-Proline (Ac-PGP), a degradation product of collagen, on hEPC-mediated cutaneous wound healing and neovascularization. Treatment of hEPCs with Ac-PGP increased migration, proliferation, and tube-forming activity of hEPCs in vitro. Knockdown of CXCR2 expression in hEPCs abrogated the stimulatory effects of Ac-PGP on migration and tube formation. In a cutaneous wound healing model of rats and mice, topical application of Ac-PGP accelerated cutaneous wound healing with promotion of neovascularization. The positive effects of Ac-PGP on wound healing and neovascularization were blocked in CXCR2 knockout mice. In nude mice, the individual application of Ac-PGP treatment or hEPC injection accelerated wound healing by increasing neovascularization. Moreover, the combination of Ac-PGP treatment and hEPC injection further stimulated wound healing and neovascularization. Topical administration of Ac-PGP onto wound bed stimulated migration and engraftment of transplanted hEPCs into cutaneous dermal wounds. Therefore, these results suggest novel applications of Ac-PGP in promoting wound healing and augmenting the therapeutic efficacy of hEPCs.


Asunto(s)
Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/fisiología , Neovascularización Fisiológica/efectos de los fármacos , Oligopéptidos/metabolismo , Prolina/análogos & derivados , Cicatrización de Heridas/efectos de los fármacos , Heridas y Lesiones/tratamiento farmacológico , Administración Tópica , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones Desnudos , Oligopéptidos/administración & dosificación , Prolina/administración & dosificación , Prolina/metabolismo , Ratas , Receptores de Interleucina-8B/metabolismo , Resultado del Tratamiento
19.
Stem Cells ; 35(3): 654-665, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27790799

RESUMEN

Increasing evidence suggests that circulating angiogenic cells (CACs) promote repair of ischemic tissues. Activation of formyl peptide receptor 2 (Fpr2) has been reported to stimulate repair of ischemic heart. This study was conducted to investigate the role of Fpr2 on CAC mobilization and cardiac protection in myocardial infarction (MI). WKYMVm, a strong agonist for Fpr2, was administered in a murine model of acute MI, and mobilization of CACs including endothelial progenitor cells (CD34+ Flk1+ or Sca1+ Flk1+ cells) in peripheral blood was monitored. CAC mobilization by daily injection of WKYMVm for the first 4 days after MI was as efficient as granulocyte colony-stimulating factor and provided myocardial protection from apoptosis with increased vascular density and preservation of cardiac function. Transplantation of bone marrow (BM) from green fluorescent protein mice showed that BM-derived cells homed to ischemic heart after WKYMVm treatment and contributed to tissue protection. Transplantation of BM from Fpr2 knockout mice showed that Fpr2 in BM cells is critical in mediation of WKYMVm-stimulated myocardial protection and neovascularization after MI. These results suggest that activation of Fpr2 in BM after WKYMVm treatment provides cardiac protection through mobilization of CACs after MI, which may lead to the development of a new clinical protocol for treating patients with ischemic heart conditions. Stem Cells 2017;35:654-665.


Asunto(s)
Células Progenitoras Endoteliales/citología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Neovascularización Fisiológica , Receptores de Formil Péptido/metabolismo , Regeneración , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Cardiotónicos/farmacología , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Pruebas de Función Cardíaca , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/fisiopatología , Neovascularización Fisiológica/efectos de los fármacos , Oligopéptidos/farmacología , Regeneración/efectos de los fármacos
20.
Exp Mol Med ; 48: e255, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27561949

RESUMEN

Cancer stem cells are a subpopulation of cancer cells characterized by self-renewal ability, tumorigenesis and drug resistance. The aim of this study was to investigate the role of HMGA1, a chromatin remodeling factor abundantly expressed in many different cancers, in the regulation of cancer stem cells in ovarian cancer. Spheroid-forming cancer stem cells were isolated from A2780, SKOV3 and PA1 ovarian cancer cells by three-dimensional spheroid culture. Elevated expression of HMGA1 was observed in spheroid cells along with increased expression of stemness-related genes, such as SOX2, KLF4, ALDH, ABCB1 and ABCG2. Furthermore, spheroid A2780 cells, compared with adherent cells, showed higher resistance to chemotherapeutic agents such as paclitaxel and doxorubicin. HMGA1 knockdown in spheroid cells reduced the proliferative advantage and spheroid-forming efficiency of the cells and the expression of stemness-related genes. HMGA1 overexpression in adherent A2780 cells increased cancer stem cell properties, including proliferation, spheroid-forming efficiency and the expression of stemness-related genes. In addition, HMGA1 regulated ABCG2 promoter activity through HMGA1-binding sites. Knockdown of HMGA1 in spheroid cells reduced resistance to chemotherapeutic agents, whereas the overexpression of HMGA1 in adherent ovarian cancer cells increased resistance to chemotherapeutic agents in vitro. Furthermore, HMGA1-overexpressing A2780 cells showed a significant survival advantage after chemotherapeutic agent treatment in a xenograft tumorigenicity assay. Together, our results provide novel insights regarding the critical role of HMGA1 in the regulation of the cancer stem cell characteristics of ovarian cancer cells, thus suggesting that HMGA1 may be an important target in the development of therapeutics for ovarian cancer patients.


Asunto(s)
Proliferación Celular , Resistencia a Antineoplásicos , Proteína HMGA1a/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Ováricas/patología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína HMGA1a/análisis , Proteína HMGA1a/genética , Humanos , Factor 4 Similar a Kruppel , Ratones Endogámicos BALB C , Ratones Desnudos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Esferoides Celulares , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...